s

» Los Alamos

NATIONAL LABORATORY
EST.1943

Byfl: Veni, Vidi, Numerari
Scott Pakin

Applied Computer Science Group (CCS-7)
14 August 2015

UNCLASSIFIED

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

QOutline

Motivation
Approach
Examples
Conclusions

Slide 2

s Los Alamos

NATIONAL LABORATORY

UNCLASSIFIED

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Zettoscole
/{Mmhe =@seate-Timeframe
W%mvelmmwm
OeFvseert

Archltectural detalils are as t

ciativities, memory and storage latencies
Idths, functional un#s per threads, threads per core,

cores @W@@,ﬁ@' extent of cQherence
domains, on/off- Chlp network topologf
Ca@smulate or model what W

lI Ize for current supercomputers
and hope that future supercome
o — SMMMLASSIFIED slde s

. L Alamos

AL LABORATORY
Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Applications in the Exascale Timeframe

Want apps being developed today to run fast on
tomorrow’s supercomputers

Architectural details are as yet unknown

Cache sizes and associativities, memory and storage latencies
and bandwidths, functional units per threads, threads per core,
cores per socket, sockets per node, extent of coherence
domains, on/off-chip network topologies, communication
latencies and bandwidths, ...

Can’t simulate or model what we don’t know

Typical approach: Optimize for current supercomputers
and hope that future supercomputers aren’t too different

Slide 4

s Los Alamos

NATIONAL LABORATORY

UNCLASSIFIED

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Hardware Performance Counters

Provided by all modern processors

Tally various microarchitectural events
Flops, cache misses, branch mispredicts, ...

Inform many performance-analysis tools
VTune, CrayPat, PAPI, HPCToolkit, ...

Pros
Detailed HW information, unintrusive

cons

Vary by processor, limited number usable at once,
often highly unintuitive interpretations

UNCLASSIFIED

Slide 5

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Measuring Memory Accesses

for (1 = 0; 1 < 100000000; 1++)
sum += array[i1]; /* doubles */

How many main-memory
accesses?
Measure L3 cache misses
100M accesses X
8B/access x 1 line/64B x 1
miss/line = 12.5M misses
Performance counter results
Tally is only 1M
Why? Because prefetches
don’t count as misses on
Intel processors

12,000,000

10,000,000

8,000,000

6,000,000

4,000,000

2,000,000

UNCLASSIFIED

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Expected Measured

Slide 6

s Los Alamos

NATIONAL LABORATORY
EST.1943

Measuring Floating-Point Operations

double apply shape (int n, float *v, float *vs)
{

double accum = 0.0;
int 1;

for (1 = 0; 1 <n; 1++) {
float x :q vLil);
vs[i] = (1.0F) xF(x £ 1.00); ~ SPmap
}

J

for (i = 0; 1 < n; i++)
accum @ vs[il; DP reduce
return accum;

}

How many flops does the above perform?

Expect somewhere between 3 (-, *, +=) and 6 (also
fabst(), <=, (double))

UNCLASSIFIED

Slide 7

s Los Alamos

NATIONAL LABORATORY

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Measuring Floating-Point Operations

Performance counter ’ 50
results 7
. c 0.4
Range is from O to 8 S 3 iy
© N -
Results depend on R \ A\ kel
microarchitecture, T g N s
compiler, and specific Q2 N i F
@) |
counters used T \ :
. 1o NN -
1 [\"\ |
Explanations BTNl el
Vector flops not always CRRIRIRIRREE
counted as flops SR ORISR OO @232
: : o0 09,70 O on OO0 o
FP register motion may SIS IS L
2 Q20 Q2 RV 0 W
count as flops ié@"’ o §®© ROt

UNCLASSIFIED Slide 8

s Los Alamos

. ! NATIONAL LABORATORY
Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA Fertada

Key Insight

Don’t need microarchitectural details for a first-
order analysis of future application performance

Likely to perform well Unlikely to perform well

Flop-heavy codes (actually, Branch-heavy codes,
also integer-op-heavy especially unpredictable or
codes) divergent branches

Codes with lots of memory Codes randomly accessing
locality (temporal, perhaps large amounts of memory
also spatial)

Data-parallel codes (e.g., Highly serial codes
vector or SIMT parallelism)

Slide 9

s Los Alamos

UNCLASSIFIED

NATIONAL LABORATORY

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Byfl Approach

O; 1 < 100000000; 1++)
array[i1]; /* doubles */

“Software performance f°;w§‘+
counters”

Instrument code at
compile time
Tally operations of interest for (i = 0; i < 100000000; i++) {
Flops, integer ops, loads S €= @y]S 7~ eetisles =/
’ ’ ’ num_loads++;
stores, branches, ... num_Flops++:

Richer info than at run-time] bytes_loaded += 8;

Accumulate counter
values at run time Artist’s conception. Transformation

) actually performed on the compiler’s
Want to handle “while

intermediate representation.
not converged() do...”
UNCLASSIFIED

Slide 10

s Los Alamos

NATIONAL LABORATORY

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Benefits

No ambiguity regarding semantics
When in doubt, can read tool source code

No measurement variability across architectures
A divide is a divide, not a reciprocal approximation

Not limited to a given number of live counters
No mutually exclusive counters
Not limited to what the hardware can measure

Not limited to scalar counters

UNCLASSIFIED Slide 11

s Los Alamos

NATIONAL LABORATORY

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Analyzing Application Performance

Somewnhat different thought process
Not hardware-centric but application-centric

Ask
How many cache (or TLB) misses What is my app’s working-set
did my app observe? size?
How many flops did my app How many flops did my app
perform per second? perform per load?
How many branches were How many operations did my app
mispredicted? perform per branch?

UNCLASSIFIED Slide 12

s Los Alamos

NATIONAL LABORATORY

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Basic Analysis

More detail than is provided by HW counters

Measurement (SNAP)

Load operations 25,952,958,723
Store operations 5,297,479,266
Floating-point operations 32,338,525,886
Integer operations 127,617,520,266
Function-call operations (non-exception-throwing) 33,202,227
Function-call operations (exception-throwing) 0
Unconditional and direct branch operations (removable) 1,109,576,789
Unconditional and direct branch operations (mandatory) 64,884,317
Conditional branch operations (not taken) 1,249,240,855
Conditional branch operations (taken) 10,986,614,142, _

UNCLASSIFIED Slide 13

s Los Alamos

NATIONAL LABORATORY

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Basic Analysis

More detail than is provided by HW counters

Measurement (SNAP)

Unconditional but indirect branch operations 0
Multi-target (switch) branch operations 10
Function-return operations 77,443
Other branch operations 0
Bytes loaded 295,721,649,378
Bytes stored 79,140,611,792
Unique addresses loaded or stored 128,318,469
Bytes needed to cover half of all dynamic loads and stores 1,928
Vector operations 11,208,258,983

Total vector elements 22.416,518,166, |

UNCLASSIFIED Slide 14

s Los Alamos

NATIONAL LABORATORY

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Example #1: “Hot” Library Calls

SNAP NuT

1 54.4%llvm.memset.p0i8.i64 20.1%llvm.memcpy.p0i8.p0i8.i64
2 44.5%fabs 12.0%acos
3 0.1% gfortran_internal _pack 8.3%log

4 0.1%omp_get_num_threads 7.2%asin
5 0.1%omp_get_thread num 7.2%cos
6 0.1%GOMP_barrier 7.2%sin

What library calls get invoked most frequently?
SNAP: memset(), fabs(), and OpenMP calls

NuT: memcpy () and transcendentals

Slide 15

UNCLASSIFIED
s Los Alamos

NATIONAL LABORATORY

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Example #2: Loads and Stores by Type

%NuT loads more 1nt values]

Loads of 32-bit integers

Loads of 64-bit floating-point values
Loads of 64-bit integers

Loads of 8-bit integers

Loads of pointers to 32-bit integers

B SNAP
B NuT

"

SNAP loads more 1nt* values}

Loads of pointers to 64-bit floating-point values | . ——
Loads of pointers to 8-bit integers ™
Loads of pointers to oddly sized "other” values i ————
Loads of vectors of 64-bit floating-point values
Stores of 32-bit integers Me—————————————
Stores of 64-bit floating-point values Ha—————
Stores of 64-bit integers mmm
Stores of 8-bit integers =
Stores of pointers to oddly sized "other" valueS —
Stores of vectors of 64-bit floating-point values e —
0% 5% 10% 15% 20% 25% 30% 35% 40%

Fraction of dynamic loads and stores

Are load and store data types as expected?
SNAP: loads of 64-bit FP vectors
NuT: loads of 64-bit FP scalars

Slide 16

s Los Alamos

UNCLASSIFIED

. ; NATIONAL LABORATORY
Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA Fertada

Example #3: “Hot” Instructions

Add, 20.5%

20% A -
. —_Imul, 11.6%] xor 11@

»
[
o
o
S
ar
2 2 10%
S
= | |
O><5%]| I |
5" 11 TN I
S g] I oy i I | .
(&)
c T © O = H:—:HGJ-OQ_E——_QhQ-J—lGJCD-O —————— 24—'4—1—:_0_ GJD_CUED_ —_
b UUCﬁggmGEEUEQ§33Eg$;xmﬁgOIE§Q8ﬁ§)9u§5:gcQu§Qm
L o< =0 ©) T < o °n = T © O o o 2 S L2nES S N
= <g @ E>,_,_O |_|_|—,_|_CQE>>_1_| = n on o = N 2 =D
< s = [T L o () v 2 £ = (] >=om N =D
oS m o o L = ma o v N >
S 5 S Q@ £ 0 E
£ s X L o c 5
< s u 3] 2 5
£ § = B SNAP

Instruction
B NuT

Which instructions should the CPU run fast?

SNAP: integer adds
NuT: XORs and integer multiplies

Slide 17

s Los Alamos

UNCLASSIFIED

. ! NATIONAL LABORATORY
Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA Fertada

Example #4: Instruction Dependencies

Load onst]

@ Load onst]
SNAP
ICmp onst]

e Loa const—(Ga)

Which instructlons feed into which other
Instructions?

Think fused multiply-add: What else should be fused?
Useful for synthetic application mock-ups

UNCLASSIFIED

Ad

Slide 18

s Los Alamos

NATIONAL LABORATORY
T.194

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Example #4: Instruction Dependencies

LShr, Const] Mul
[ConsVCOnst]

Const] @
onsﬂ
Load Const]

Which Instructions feed into which other
Instructions?

Think fused multiply-add: What else should be fused?
Useful for synthetic application mock-ups

UNCLASSIFIED

Const]

NuT

Slide 19

s Los Alamos

NATIONAL LABORATORY
T.194

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Example #5: Accesses by Data Structure

NuT

Hits to high-speed memory (%)

Size of high-speed memory (B)

Capacity (B) | Coverage (%) 3 data structures cover 50% of

aCCesses

128 20
No difference between 4KB and 4MB of

1KB 50
high-speed memory
8MB <100 yncrassiFiED

256MB « Los Alamos

Slide 20

NATIONAL LABORATORY

0S National Security, LLC for the U.S. Department of Energy's NNSA

Conclusions

Want to optimize apps for future supercomputers
As-yet unknown architecture — can’t model or simulate

Insight: Can follow trends to know what app characteristics are
likely to be good/bad for performance

Software performance counters provide the requisite
Information for optimization

Hardware counters too grounded in today’s hardware and too
divorced from the app developer’s view

Byfl's compile-time instrumentation + run-time data gathering
provides richer information than either hardware or static analysis

G\ttps://github.co m/IosaIamos/Bny

UNCLASSIFIED Slide 21

s Los Alamos

NATIONAL LABORATORY

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

	Byfl: Veni, Vidi, Numerari
	Outline
	Applications in the Exascale Timeframe
	Applications in the Exascale Timeframe
	Hardware Performance Counters
	Measuring Memory Accesses
	Measuring Floating-Point Operations
	Measuring Floating-Point Operations
	Key Insight
	Byfl Approach
	Benefits
	Analyzing Application Performance
	Basic Analysis
	Basic Analysis
	Example #1: “Hot” Library Calls
	Example #2: Loads and Stores by Type
	Example #3: “Hot” Instructions
	Example #4: Instruction Dependencies
	Example #4: Instruction Dependencies
	Example #5: Accesses by Data Structure
	Conclusions

