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Applications in the Exascale Timeframe

Want apps being developed today to run fast on
tomorrow’s supercomputers

Architectural details are as yet unknown

Cache sizes and associativities, memory and storage latencies
and bandwidths, functional units per threads, threads per core,
cores per socket, sockets per node, extent of coherence
domains, on/off-chip network topologies, communication
latencies and bandwidths, ...

Can’t simulate or model what we don’t know

Typical approach: Optimize for current supercomputers
and hope that future supercomputers aren’t too different
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Hardware Performance Counters

Provided by all modern processors

Tally various microarchitectural events
Flops, cache misses, branch mispredicts, ...

Inform many performance-analysis tools
VTune, CrayPat, PAPI, HPCToolkit, ...

Pros
Detailed HW information, unintrusive

cons

Vary by processor, limited number usable at once,
often highly unintuitive interpretations
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Measuring Memory Accesses

for (1 = 0; 1 < 100000000; 1++)
sum += array[i1]; /* doubles */

How many main-memory
accesses?
Measure L3 cache misses
100M accesses X
8B/access x 1 line/64B x 1
miss/line = 12.5M misses
Performance counter results
Tally is only 1M
Why? Because prefetches
don’t count as misses on
Intel processors
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Measuring Floating-Point Operations

double apply shape (int n, float *v, float *vs)
{

double accum = 0.0;
int 1;

for (1 = 0; 1 <n; 1++) {
float x :q vLil);
vs[i] = (1.0F ) xF(x £ 1.00); ~ SPmap
}

J

for (i = 0; 1 < n; i++)
accum @ vs[il; DP reduce
return accum;

}

How many flops does the above perform?

Expect somewhere between 3 (-, *, +=) and 6 (also
fabst(), <=, (double))
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Measuring Floating-Point Operations
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Key Insight

Don’t need microarchitectural details for a first-
order analysis of future application performance

Likely to perform well Unlikely to perform well

Flop-heavy codes (actually, Branch-heavy codes,
also integer-op-heavy especially unpredictable or
codes) divergent branches

Codes with lots of memory  Codes randomly accessing
locality (temporal, perhaps large amounts of memory
also spatial)

Data-parallel codes (e.g., Highly serial codes
vector or SIMT parallelism)
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Byfl Approach

O; 1 < 100000000; 1++)
array[i1]; /* doubles */

“Software performance f°;w§‘+
counters”

Instrument code at
compile time
Tally operations of interest for (i = 0; i < 100000000; i++) {
Flops, integer ops, loads S €= @y ]S 7~ eetisles =/
’ ’ ’ num_loads++;
stores, branches, ... num_Flops++:

Richer info than at run-time ] bytes_loaded += 8;

Accumulate counter
values at run time Artist’s conception. Transformation

) actually performed on the compiler’s
Want to handle “while

intermediate representation.
not converged() do...”
UNCLASSIFIED
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Benefits

No ambiguity regarding semantics
When in doubt, can read tool source code

No measurement variability across architectures
A divide is a divide, not a reciprocal approximation

Not limited to a given number of live counters
No mutually exclusive counters
Not limited to what the hardware can measure

Not limited to scalar counters
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Analyzing Application Performance

Somewnhat different thought process
Not hardware-centric but application-centric

Ask
How many cache (or TLB) misses What is my app’s working-set
did my app observe? size?
How many flops did my app How many flops did my app
perform per second? perform per load?
How many branches were How many operations did my app
mispredicted? perform per branch?

UNCLASSIFIED Slide 12

s Los Alamos

NATIONAL LABORATORY

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA



Basic Analysis

More detail than is provided by HW counters

Measurement (SNAP)

Load operations 25,952,958,723
Store operations 5,297,479,266
Floating-point operations 32,338,525,886
Integer operations 127,617,520,266
Function-call operations (non-exception-throwing) 33,202,227
Function-call operations (exception-throwing) 0
Unconditional and direct branch operations (removable) 1,109,576,789
Unconditional and direct branch operations (mandatory) 64,884,317
Conditional branch operations (not taken) 1,249,240,855
Conditional branch operations (taken) 10,986,614,142, _
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Basic Analysis

More detail than is provided by HW counters

Measurement (SNAP)

Unconditional but indirect branch operations 0
Multi-target (switch) branch operations 10
Function-return operations 77,443
Other branch operations 0
Bytes loaded 295,721,649,378
Bytes stored 79,140,611,792
Unique addresses loaded or stored 128,318,469
Bytes needed to cover half of all dynamic loads and stores 1,928
Vector operations 11,208,258,983

Total vector elements 22.416,518,166, |
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Example #1: “Hot” Library Calls

SNAP NuT

1 54.4%llvm.memset.p0i8.i64 20.1%llvm.memcpy.p0i8.p0i8.i64
2 44.5%fabs 12.0%acos
3 0.1% gfortran_internal _pack  8.3%log

4 0.1%omp_get_num_threads 7.2%asin
5 0.1%omp_get_thread num 7.2%cos
6 0.1%GOMP_barrier 7.2%sin

What library calls get invoked most frequently?
SNAP: memset(), fabs(), and OpenMP calls

NuT: memcpy () and transcendentals
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Example #2: Loads and Stores by Type

%NuT loads more 1nt values]

Loads of 32-bit integers

Loads of 64-bit floating-point values
Loads of 64-bit integers

Loads of 8-bit integers

Loads of pointers to 32-bit integers

B SNAP
B NuT

"

SNAP loads more 1nt* values}

Loads of pointers to 64-bit floating-point values | . ——
Loads of pointers to 8-bit integers ™
Loads of pointers to oddly sized "other” values i ————
Loads of vectors of 64-bit floating-point values
Stores of 32-bit integers Me—————————————
Stores of 64-bit floating-point values Ha—————
Stores of 64-bit integers mmm
Stores of 8-bit integers =
Stores of pointers to oddly sized "other" valueS —
Stores of vectors of 64-bit floating-point values e —
0% 5% 10% 15% 20% 25% 30% 35% 40%

Fraction of dynamic loads and stores

Are load and store data types as expected?
SNAP: loads of 64-bit FP vectors
NuT: loads of 64-bit FP scalars
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Example #3: “Hot” Instructions

Add, 20.5%
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Instruction
B NuT

Which instructions should the CPU run fast?

SNAP: integer adds
NuT: XORs and integer multiplies
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Example #4: Instruction Dependencies

Load onst]

@ Load onst]
SNAP
ICmp onst]

e Loa const—(Ga)

Which instructlons feed into which other
Instructions?

Think fused multiply-add: What else should be fused?
Useful for synthetic application mock-ups
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Example #4: Instruction Dependencies

LShr, Const] Mul
[ConsVCOnst]

Const] @
onsﬂ
Load Const]

Which Instructions feed into which other
Instructions?

Think fused multiply-add: What else should be fused?
Useful for synthetic application mock-ups
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Example #5: Accesses by Data Structure

NuT

Hits to high-speed memory (%)

Size of high-speed memory (B)

Capacity (B) | Coverage (%) 3 data structures cover 50% of

aCCesses

128 20
No difference between 4KB and 4MB of

1KB 50
high-speed memory
8MB <100 yncrassiFiED

256MB « Los Alamos

Slide 20

NATIONAL LABORATORY

0S National Security, LLC for the U.S. Department of Energy's NNSA



Conclusions

Want to optimize apps for future supercomputers
As-yet unknown architecture — can’t model or simulate

Insight: Can follow trends to know what app characteristics are
likely to be good/bad for performance

Software performance counters provide the requisite
Information for optimization

Hardware counters too grounded in today’s hardware and too
divorced from the app developer’s view

Byfl's compile-time instrumentation + run-time data gathering
provides richer information than either hardware or static analysis

G\ttps://github.co m/IosaIamos/Bny
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